Wiki

Home » Blog » Wiki » Page 2
The owner of the system should provide clear requirements of what the system should do and should define what constitutes "maintainability" of the system. This places a burden on the owner of the system to consider the full life-cycle of the system.
In many instances, the result of step 4 (Requirements Analysis), is an RFQ for the system implementation has been issued to one or more systems integrators. Upon selecting the system integrator, step 5 (Design) begins. Upon completing step 5 (Design), the system or process flow is defined. One of the major outputs from step 5 are the RFQs for the major functional components of the finished system. Based on the RFQ responses (bids), the Machine or device manufacturers are chosen.
The industry as a whole needs to enforce better system design and performance. This initiative will come from the clients, and implemented by the developers. The cost/benefit trade-off will always be present. Developers trying to improve their margins (reduce cost - raise price) and customers raising functionality and willing to pay less. "We as engineers" are caught in the middle, trying to find better ways to achieve the seemingly impossible.
KW is true power and KVA is apparent power. In per unit calculations the more predominantly used base, which I consider standard is the KVA, the apparent power because the magnitude of the real power (KW) is variable / dependent on a changing parameter of the cos of the angle of displacement (power factor) between the voltage and current. Also significant consideration is that the rating of transformers are based in KVA, the short circuit magnitudes are expressed in KVA or MVA, and the short circuit duty of equipment are also expressed in MVA (and thousands of amperes, KA ).
1) Mechanical Simulations – Via various solid modeling tools and cad programs; tooling, moving mechanisms, end-effectors… are designed with 3D visualizations, connecting the modules to prevent interference, check mass before actual machining…
2) Electronics Simulations – This type of simulations are either related to the manufacturers of "specific instrumentations" used in automation industry (ultrasonic welders, laser marking systems,…) or the designers of circuit boards.
3) Electrical & Controls Simulations.
If you look back over history you will find how things started out from the early engineers and scientists looking at materials and developing systems that would meet their transmission goals. I recall when drives (essentially ac/dc/ac converters) had an upper limit around 200 to 230 volts).
A 1:1 ratio transformer is primarily used to isolate the primary from the secondary. In small scale electronics it isolates the noise / interference collected from the primary from being transmitted to the secondary. In critical care facilities it can be used as an isolation transformer to isolate the primary grounding of the supply from the critical grounding system of the load (secondary).
SCADA will have a set of KPI's that are used by the PLCs/PACs/RTUs as standards to compare to the readings coming from the intelligent devices they are connected to such as flowmeters, sensors, pressure guages, etc. HMI is a graphical representation of your process system that is provided both the KPI data and receives the readings from the various devices through the PLC/PAC/RTUs.
You know standards for the electronic industry have been around for decades, so each of the interfaces we have discussed does have a standard. Those standards may be revised but will still be used by all segments of our respective engineering disciplines.
The concept of home automation on a global scale is a good concept. How to implement such a technology on a global scale is an interesting problem, or I should say issues to be resolved. Before global approval can be accomplished the product of home automation may need a strategy that starts with a look at companies that have succeeded in getting global approval of their products.
You already know from your engineering that higher voltages results to less operational losses for the same amount of power delivered. The bulk capacity of 3000MW has a great influence on the investment costs obviously, that determines the voltage level and the required number of parallel circuit.
Equivalent active power losses during electrical motor's testing in no-load conditions contain next losses: 1. active power losses in the copper of stator's winding which are in direct relation with square of no-load current value: Pcus=3*Rs*I0s*I0s,
Gozuk Service Gozuk Blog: all about electric motor control & drives industries development in energy saving applications.

Featured

Like pumps, fans consume significant electrical energy while serving several applications. In many plants, the VFDs (variable ... energy consumedA frequency inverter controls AC motor speed. The frequency inverter converts the fixed supply frequency (60 Hz) to a ... Motor starter (also known as soft starter, motor soft starter) is a electronic device integrates soft start, soft stop, ... Soft starter allows the output voltage decreases gradually to achieve soft stop, in order to protect the equipment. Such as the ... Soft Starter reduces electric motor starting current to 2-4 times during motor start up, reduces the impact to power grid during ...

In Discussion