Home » Blog » Wiki » Systems Development Life-Cycle

Systems Development Life-Cycle

Step 1. Initiation
Step 2. System Concept Development
Step 3. Planning
Step 4. Requirements Analysis
Step 5. Design
Step 6. Development
Step 7. Integration and Test
Step 8. Implementation
Step 9. Operation and Maintenance
Step 10.Disposition

There are three major players present in this model; Customer (client), System Integrator, and Machine or device manufacturer.

In many instances, the result of step 4 (Requirements Analysis), is an RFQ for the system implementation has been issued to one or more systems integrators. Upon selecting the system integrator, step 5 (Design) begins. Upon completing step 5 (Design), the system or process flow is defined. One of the major outputs from step 5 are the RFQs for the major functional components of the finished system. Based on the RFQ responses (bids), the Machine or device manufacturers are chosen.

Steps 6, 7, and 8 are where all the individual functional components are integrated. This is where the system integrator makes sure the outputs and feedback between to machines or devices is defined and implemented. Step 8 ends with a full systems functional test in a real manufacturing situation is demonstrated to the customer. This test includes demonstrating all error conditions defined by the requirements document and the systems requirements document. If a specific device or machine fails its respective function it is corrected (programming, wiring, or design) by the manufacturer and the test begins anew.

Each of the scenarios presented is correct. The technician role being presented (customer, integrator, or manufacturer) is not clear. System diagnostics are mandatory and need to be well defined, even in small simple machines. There should be very few and extreme conditions under which the customer’s technician should ever have to dig into a machine's code to troubleshoot a problem. This condition usually indicates a design or integration oversight.

(You can find a complete description here,

Post a Comment:

Calculate (7 - 4) =

You may also like:

I've seen some attempt of electrical driven prototypes in the field, but is still not an enough big sector that let you find specific literature. Excluding the large dumpers for mining, probably the only ...
Power losses of ferromagnetic core depend from voltage and frequency. In case where is no-load secondary winding, power transformer has a power losses in primary winding (active and reactive power losses) ...
There are two types of reactive consumptions in AC power system, inductive and capacitive reactances. We can not call them losses. The loss of a transmission line is the active power consumed by the line ...
You already know from your engineering that higher voltages results to less operational losses for the same amount of power delivered. The bulk capacity of 3000MW has a great influence on the investment costs ...
It is a well documented phenomenon that underground cables fail a week or so after lightning activity. Some of the can be attributed to lightning surges that enter the primary conductor and reflect off an open ...
Gozuk Service Gozuk Blog: all about electric motor control & drives industries development in energy saving applications.


Like pumps, fans consume significant electrical energy while serving several applications. In many plants, the VFDs (variable ... energy consumedA frequency inverter controls AC motor speed. The frequency inverter converts the fixed supply frequency (60 Hz) to a ... Motor starter (also known as soft starter, motor soft starter) is a electronic device integrates soft start, soft stop, ... Soft starter allows the output voltage decreases gradually to achieve soft stop, in order to protect the equipment. Such as the ... Soft Starter reduces electric motor starting current to 2-4 times during motor start up, reduces the impact to power grid during ...

In Discussion