Automation controls
Home » Blog » Automation controls » Phase rotation errors

Phase rotation errors

Phase rotation errors are not as rare as they ought to be. I've seen more than one building with a systematic phase rotation error. This can be prevented by carefully following the color coding system (Yellow Orange Brown and Red Blue Black for 480 volt and 208 volt systems in the US for example) and tagging feeders at both ends to assure proper connections.

To check for proper phase rotation sequencing (ABC and not ACB) you can use a phase rotation meter. Without that you can bump a three phase motor that should be correctly connected to see if it turns in the right direction. If it's wrong, reverse any two phase wires from the source to the distribution equipment. However, if you have a tie breaker and intend to operate the secondaries of two transformers in parallel by closing it that is not good enough. Both transformer distribution networks have to be connected correctly on all three phases. You have to check the voltage across each corresponding pair of terminals on the tie breaker and be certain they are all about zero volts. If you don't and there is an error, closing the tie breaker if that is possible at all (some electronic breakers may lock you out) will result in a phase to phase bolted fault that can result in severe damage to your distribution equipment. Phase rotation errors are invariably the result of incompetent installation, inadequate specifications for feeder identification, and inadequate inspection.

There are times when the phase rotation error is made on the primary side of the transformer. If this happens it can be compensated for by reversing the phase rotation error from the secondary side. This is less desirable but it will work. If you have multiple phase rotation errors in the same distribution network you have quite a mess to clean up. It will be time consuming and expensive tracking all of them down to be certain you have eliminated them. False economies by cutting corners on the initial installation of substations and distribution equipment will result in necessitating very expensive and inconvenient repairs. If it is not corrected you risk severe damage to three phase load equipment.

Post a Comment:

    
Calculate (4 * 6) =

You may also like:

This is a finite element analysis tool for various applications. In power we get the voltage (stress) distribution in equipment like cables, bends in cables etc including stator winding of generators.
Making a connection of 3 phase motor the nameplate shows different voltages for delta it is 380-400 volt and 660-690 volt for star, what option should be selected? the supply Line to Line voltage is ...
When a choosing a power cable for a motor, we prefer using one larger diameter cable than two smaller diameter cables in parallel, although it would cost less to do so. Why?
Most electrical steels used in stator and rotor construction also have an insulating coating applied; some of these are organic materials and some are inorganic (solvent-based) materials. The choice is ...
The voltage transient which occurs whenever there is a sudden change in current in an inductive device. Inductors resist a sudden current change. V=L di/dt In electric motors this occurs at start up when the ...
Gozuk Service Gozuk Blog: all about electric motor control & drives industries development in energy saving applications.

Featured

Like pumps, fans consume significant electrical energy while serving several applications. In many plants, the VFDs (variable ... energy consumedA frequency inverter controls AC motor speed. The frequency inverter converts the fixed supply frequency (60 Hz) to a ... Motor starter (also known as soft starter, motor soft starter) is a electronic device integrates soft start, soft stop, ... Soft starter allows the output voltage decreases gradually to achieve soft stop, in order to protect the equipment. Such as the ... Soft Starter reduces electric motor starting current to 2-4 times during motor start up, reduces the impact to power grid during ...

In Discussion